2,556 research outputs found

    Differences of interface and bulk transport properties in polymer field-effect devices

    Get PDF
    The influence of substrate treatment with self-assembled monolayers and thermal annealing was analysed by electrical and structural measurements on field-effect transistors (FETs) and metal-insulator-semiconductor (MIS) diodes using poly(3-hexylthiophene) (P3HT) as a semiconducting polymer and Si/SiO2 wafers as a substrate. It is found that surface treatment using silanising agents like hexamethyldisilazane (HMDS) and octadecyltrichlorosi-lane (OTS) can increase the field-effect mobility by up to a factor of 50, reaching values in saturation of more than 4E-2 cm^2/Vs at room temperature. While there is a clear correlation between the obtained field-effect mobility and the contact angle of water on the treated substrates, X-ray diffraction and capacitance measurements on MIS diodes show that structural and electrical properties in the bulk of the P3HT films are not influenced by the surface treatment. On the other hand, thermal annealing is found to cause an increase of grain size, bulk relaxation frequency and thereby of the mobility perpendicular to the SiO2/P3HT interface, but has very little influence on the field-effect mobility. Temperature dependent investigations on MIS diodes and FETs show that the transport perpendicular to the substrate plane is thermally activated and can be described by hopping in a Gaussian density of states, whereas the field-effect mobility in the substrate plane is almost temperature independent over a wide range. This investigations reveal significant differ-ences between interface and bulk transport properties in polymer field-effect devices.Comment: accepted at Organic electronic

    Measurements of rainfall rate, drop size distribution, and variability at middle and higher latitudes: application to the combined DPR-GMI algorithm

    Get PDF
    The Global Precipitation Measurement mission is a major U.S.–Japan joint mission to understand the physics of the Earth’s global precipitation as a key component of its weather, climate, and hydrological systems. The core satellite carries a dual-precipitation radar and an advanced microwave imager which provide measurements to retrieve the drop size distribution (DSD) and rain rates using a Combined Radar-Radiometer Algorithm (CORRA). Our objective is to validate key assumptions and parameterizations in CORRA and enable improved estimation of precipitation products, especially in the middle-to-higher latitudes in both hemispheres. The DSD parameters and statistical relationships between DSD parameters and radar measurements are a central part of the rainfall retrieval algorithm, which is complicated by regimes where DSD measurements are abysmally sparse (over the open ocean). In view of this, we have assembled optical disdrometer datasets gathered by research vessels, ground stations, and aircrafts to simulate radar observables and validate the scattering lookup tables used in CORRA. The joint use of all DSD datasets spans a large range of drop concentrations and characteristic drop diameters. The scaling normalization of DSDs defines an intercept parameter NW, which normalizes the concentrations, and a scaling diameter Dm, which compresses or stretches the diameter coordinate axis. A major finding of this study is that a single relationship between NW and Dm, on average, unifies all datasets included, from stratocumulus to heavier rainfall regimes. A comparison with the NW–Dm relation used as a constraint in versions 6 and 7 of CORRA highlights the scope for improvement of rainfall retrievals for small drops (Dm lt; 1 mm) and large drops (Dm gt; 2 mm). The normalized specific attenuation–reflectivity relationships used in the combined algorithm are also found to match well the equivalent relationships derived using DSDs from the three datasets, suggesting that the currently assumed lookup tables are not a major source of uncertainty in the combined algorithm rainfall estimates

    Vertical Heating Structures Associated with the MJO as Characterized by TRMM Estimates, ECMWF Reanalyses, and Forecasts: A Case Study during 1998/99 Winter

    Get PDF
    The Madden–Julian oscillation (MJO) is a fundamental mode of the tropical atmosphere variability that exerts significant influence on global climate and weather systems. Current global circulation models, unfortunately, are incapable of robustly representing this form of variability. Meanwhile, a well-accepted and comprehensive theory for the MJO is still elusive. To help address this challenge, recent emphasis has been placed on characterizing the vertical structures of the MJO. In this study, the authors analyze vertical heating structures by utilizing recently updated heating estimates based on the Tropical Rainfall Measuring Mission (TRMM) from two different latent heating estimates and one radiative heating estimate. Heating structures from two different versions of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses/forecasts are also examined. Because of the limited period of available datasets at the time of this study, the authors focus on the winter season from October 1998 to March 1999. The results suggest that diabatic heating associated with the MJO convection in the ECMWF outputs exhibits much stronger amplitude and deeper structures than that in the TRMM estimates over the equatorial eastern Indian Ocean and western Pacific. Further analysis illustrates that this difference might be due to stronger convective and weaker stratiform components in the ECMWF estimates relative to the TRMM estimates, with the latter suggesting a comparable contribution by the stratiform and convective counterparts in contributing to the total rain rate. Based on the TRMM estimates, it is also illustrated that the stratiform fraction of total rain rate varies with the evolution of the MJO. Stratiform rain ratio over the Indian Ocean is found to be 5% above (below) average for the disturbed (suppressed) phase of the MJO. The results are discussed with respect to whether these heating estimates provide enough convergent information to have implications on theories of the MJO and whether they can help validate global weather and climate models

    Localised and nonlocalised structures in nonlinear lattices with fermions

    Full text link
    We discuss the quasiclassical approximation for the equations of motions of a nonlinear chain of phonons and electrons having phonon mediated hopping. Describing the phonons and electrons as even and odd grassmannian functions and using the continuum limit we show that the equations of motions lead to a Zakharov-like system for bosonic and fermionic fields. Localised and nonlocalised solutions are discussed using the Hirota bilinear formalism. Nonlocalised solutions turn out to appear naturally for any choice of wave parameters. The bosonic localised solution has a fermionic dressing while the fermionic one is an oscillatory localised field. They appear only if some constraints on the dispersion are imposed. In this case the density of fermions is a strongly localised travelling wave. Also it is shown that in the multiple scales approach the emergent equation is linear. Only for the resonant case we get a nonlinear fermionic Yajima-Oikawa system. Physical implications are discussed.Comment: 7 pages, LaTeX, no figures. to appear in Europhysics Latter

    General practitioners’ perceptions on opportunistic single-time point screening for atrial fibrillation: A European quantitative survey

    Get PDF
    Atrial fibrillation; General practitioners; SurveyFibrilación auricular; Médicos de cabecera; EncuestaFibril·lació auricular; Metges de capçalera; EnquestaBackground: There is no clear guidance on how to implement opportunistic atrial fibrillation (AF) screening in daily clinical practice. Objectives: This study evaluated the perception of general practitioners (GPs) about value and practicalities of implementing screening for AF, focusing on opportunistic single-time point screening with a single-lead electrocardiogram (ECG) device. Methods: A descriptive cross-sectional study was conducted with a survey developed to assess overall perception concerning AF screening, feasibility of opportunistic single-lead ECG screening and implementation requirements and barriers. Results: A total of 659 responses were collected (36.1% Eastern, 33.4% Western, 12.1% Southern, 10.0% Northern Europe, 8.3% United Kingdom & Ireland). The perceived need for standardized AF screening was rated as 82.7 on a scale from 0 to 100. The vast majority (88.0%) indicated no AF screening program is established in their region. Three out of four GPs (72.1%, lowest in Eastern and Southern Europe) were equipped with a 12-lead ECG, while a single-lead ECG was less common (10.8%, highest in United Kingdom & Ireland). Three in five GPs (59.3%) feel confident ruling out AF on a single-lead ECG strip. Assistance through more education (28.7%) and a tele-healthcare service offering advice on ambiguous tracings (25.2%) would be helpful. Preferred strategies to overcome barriers like insufficient (qualified) staff, included integrating AF screening with other healthcare programs (24.9%) and algorithms to identify patients most suitable for AF screening (24.3%). Conclusion: GPs perceive a strong need for a standardized AF screening approach. Additional resources may be required to have it widely adopted into clinical practice.The AFFECT-EU project has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program under the grant agreement no. 847770

    Transport properties of copper phthalocyanine based organic electronic devices

    Get PDF
    Ambipolar charge carrier transport in Copper phthalocyanine (CuPc) is studied experimentally in field-effect transistors and metal-insulator-semiconductor diodes at various temperatures. The electronic structure and the transport properties of CuPc attached to leads are calculated using density functional theory and scattering theory at the non-equilibrium Green's function level. We discuss, in particular, the electronic structure of CuPc molecules attached to gold chains in different geometries to mimic the different experimental setups. The combined experimental and theoretical analysis explains the dependence of the mobilityand the transmission coefficient on the charge carrier type (electrons or holes) and on the contact geometry. We demonstrate the correspondence between our experimental results on thick films and our theoretical studies of single molecule contacts. Preliminary results for fluorinated CuPc are discussed.Comment: 18 pages, 16 figures; to be published in Eur. Phys. J. Special Topic
    corecore